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CELT Tech Note No. 11

Sensor Noise Propagation for CELT:
Control Algorithm Analysis

D. MacMartin
8/31/01

One of the contributions to the telescope error budget associated with the active degrees
of freedom of the primary mirror is˚sensor noise propagation.  This source can become
significant because primary mirror deflections of low spatial wavenumber are almost
unobservable with segment edge sensors; as a result, the current plan is to also
incorporate wavefront sensing for the primary mirror control.  The resulting contribution
to the error budget depends on the control algorithm, and the control bandwidth in
particular.  Because it may be useful to increase the control bandwidth beyond that used
on Keck in order to compensate for the wind, this dependence of sensor noise on
bandwidth must be understood.  This note, therefore, clarifies the current estimated
contributions to the telescope error budget associated with sensor noise propagation
through the primary mirror active control system, taking into account: (i)˚the active
control bandwidth, (ii)˚the combination of wavefront and edge sensor information, and
(iii)˚the conversion of the resulting error into a seeing-limited specification.  Error
propagation, as expected, is not a driver for diffraction-limited observations.

The sensor noise propagation is discussed in references 1, 2 and 3.

1.  Existing algorithm & analysis
Some definitions and analysis are necessary for background; the following is from Ref. 3.

Each segment of the primary mirror has three out of plane degrees of freedom, and it is
convenient to use the displacement at each of the actuator locations to describe the
position of each segment.  Thus the overall deformation of the primary mirror can be
determined from the vector x of segment deflections at the actuator locations.  The rms
surface error of the primary mirror is Srms˚=˚1.06⋅σx (based purely on geometry), where σx

is the rms of the vector x, and the rms wavefront error is double the rms surface error.
The contribution to enclosed energy on the sky, θ(80), is obtained by ray-tracing analysis;
for a Gaussian point spread function and uncorrelated displacement errors σx, the result is
given by θ(80)˚=˚1.27⋅θrms˚=˚11.5⋅σx (this is specific to geometry choices such as the
distance between actuators and the center of a segment).  The derivation of the factors is
documented in Ref.˚1.  Note that for sensor noise propagation, the displacement errors are
not uncorrelated, and this needs to be accounted for in the conversion to θ(80).

An initial analysis of the error propagation resulting from sensor noise is described in
Ref.˚2.  With only the capacitive edge sensors, the low wave-number (spatially smooth)
modes have poor observability, and thus the computed actuator moves amplify the sensor
noise.  Including wavefront information improves the observability of these low wave-
number modes.  Note that the capacitive edge sensors described in Ref. 4̊ measure the
differential capacitance between an upper and lower capacitor, and are sensitive to both
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vertical translation of neighboring segments, and to relative rotation about the axis
defined by the segment edge.  The first of these is much more significant, and at the time
of writing Ref. 2̊, only the first was included.  However, including the sensor response
due to relative rotation between segments is significant because the focus  mode
becomes observable, and the low order modes also become slightly more observable.
The results presented below include the rotational sensitivity on the edge sensors, and
then add the impact of the wavefront sensors.

The vector of edge sensor readings ye that result from segment displacements satisfies

ye˚=˚Aex˚+˚ne,

where the matrix Ae is determined from the geometry, and ne is the edge sensor noise.
The singular value decomposition of Ae motivates a useful set of basis functions for
representing spatial deflection shapes of the mirror.  With Ae˚=˚UΣVT, Σ a diagonal
matrix of singular values σi, and U, V unitary, then ξ˚=˚VTx or x˚=˚Vξ is a useful change
of basis; the columns of V will be referred to as modes  for convenience, and represent
a complete orthonormal set which span the space of all possible configurations of the
primary mirror.  Large singular values of Ae correspond to highly observable deflection
shapes, which are those with large deflections between neighboring segments for unit
overall rms deflection.  The matrix Ae has three singular values equal to zero,
corresponding to overall rigid body deflection of the primary mirror.  The focus mode
(where every segment has the same dihedral angle between its neighbors) has zero
relative edge displacement between segments, but is observable with the current sensor
geometry.

The simplest control law is to estimate the deflections at the actuator locations as

x ˚˚˚=Å#y,

and compute the desired change in the actuator commands u via

∆u =˚βx ,

where A# is the left pseudo-inverse (ATA)-1AT (readily computable from the singular
value decomposition, A# has singular values σi

-1) and β<1 determines the bandwidth.
This is the feedback control law used at Keck.  (Keck also has a feedforward term that
accounts for the predictable gravity variation, but that term does not affect the analysis of
either sensor noise or control bandwidth.)  The estimate x  is optimal if the noise on the
sensors is small compared to the disturbances that the control is intended to correct.  This
results in a simpler problem formulation.  This restriction will be removed later in this
note.  Note that separating the control law into two steps of estimating the errors at the
actuator locations, and then correcting for them, simplifies the discussion both of the
influence of the control gain, and of the inclusion of wavefront information.

With the integral control law above, deflections of any spatial shape are controlled with
the same bandwidth.  However, modes with small singular value in A have large singular
values in A#, and hence the control law will amplify whatever sensor noise exists in these
directions.  Assuming white noise, then the overall noise propagation from rms sensor
noise to rms errors in estimating the deflection at the actuator locations is given by
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σx- x̊ =˚(• σ-2/Na)1/2

This formulation results in the error propagation estimates previously documented for the
CELT A-matrix; depending on geometry assumed, the error propagation is ~16-30
(compared with 4.4 for Keck).

2.  Impact of Control Bandwidth
The resulting error in actuator positions depends on the control gain, β.  The controller
acts as a low-pass filter on the noise, and thus if the noise has a flat power spectral
density, the resulting contribution to the error budget is proportional to the square root of
the bandwidth (the variance being proportional to the bandwidth).  For β˙1 the total error
contribution is given by (β/2)_σx- x.

The propagation through the controller is clearer, and more useful, if stated in terms of
the control bandwidth rather than the control gain, and also easier if one works with a
continuous-time analysis (which is adequate if the control bandwidth is much lower than
the sample rate).  The integral control law from y to u is K(s) = A#⋅k/s, where s is the
Laplace variable and k is the gain (which is related to the discrete-time gain β).  The
system transfer function G(s)˚= A.  The response from disturbances to the surface error x
resulting from this is 1/(1+GK)˚= s̊/(s+k); as desired, the control law attenuates
disturbances below the control bandwidth, set by k.  The response from sensor noise to
surface error x is K/(1+GK)˚=˚A#⋅1/(s/k+1); this is a low-pass filter that passes sensor
noise through to surface errors below the control bandwidth and attenuates higher
frequency sensor noise.  The factor A# is accounted for previously through the error
propagation to the estimated surface errors, however, the low-pass filter also needs to be
accounted for.

For a signal n with uniform PSD Φ (variance per Hertz) passed through a low-pass filter
with corner frequency k r̊ad/sec to give signal u, then

 〈u2〉˚=˚∫G*G⋅dω⋅(Φ/(2π))˚=˚k⋅π/2⋅(Φ/(2π)).

Thus for a bandwidth f0˚=˚k/(2π) in Hertz, σu =˚(f0⋅π/2⋅Φ)_.  (The factor of π/2 larger than
the control bandwidth in computing the variance accounts for the fact that there is a
contribution to the output variance due to noise that is above the control bandwidth.)

3.  Edge sensor noise
The Keck sensor noise level, quoted at 6˚nm, is the rms noise at the input to the
controller.  This has already been passed through a low-pass anti-aliasing filter with
corner frequency of fa˚=˚0.2˚Hz before being sampled at 2˚Hz.  Thus to obtain the nominal
PSD of the capacitive sensor noise, Φ, one would need to account for this filtering, giving
115˚nm2/Hz, or 11 n̊m/sqrt(Hz).  Alternatively, the effect of the control bandwidth can be
accounted for via the ratio (f0/fa)

_.  Assuming that the sensor PSD is uniform with
frequency, then this scale factor will be valid for f0˚>˚fa also.  Of course, for larger control
bandwidths, the actual anti-aliasing filter corner frequency and sensor sample rate would
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need to be correspondingly increased; however, it is the control bandwidth that ultimately
sets the contribution to the error budget, and not the sampling rate.

For Keck, therefore, with a control bandwidth of roughly 0.05˚Hz, the total contribution
to the error budget due to sensor noise can be obtained as the product of the sensor noise
at 0.2˚Hz, the error multiplier from the A matrix (or rather from A#), and a factor
accounting for the ratio of the control bandwidth to the sensor filter:

σrms˚=˚(6˚nm)⋅(4.4 nm/nm)⋅(0.05/0.2˚Hz/Hz)_˚=˚13˚nm

Alternatively, one can use the PSD specification for the sensor:

σrms˚= (11˚nm/sqrt(Hz))⋅(4.4 nm/nm)⋅((π/2)⋅0.05Hz)_˚

The specification for the edge sensors for CELT is that they should have no more noise
than those at Keck.  Note that rather than specifying 6˚nm noise when passed through a
filter with a 0.2˚Hz bandwidth, it would be preferable to specify the noise level as
11˚nm/sqrt(Hz).  Also note that the source of the sensor noise at Keck is not fully
understood, and therefore it may be possible to improve the noise levels for CELT.
Conversely, the sensor geometry is different, and therefore it may be challenging to
obtain comparable noise levels.  The contribution to the error budget can again be
computed from the rms sensor noise, the error multiplier from the A matrix, and the
square root of the desired control bandwidth.  Ignoring the focus mode, then the error
multiplier is about 15 (α=0.10), hence for the same control bandwidth as Keck, the
contribution to the error budget is about 50˚nm (surface error), while for a 1˚Hz
bandwidth sufficient to compensate for some wind-induced deformation of the primary
mirror, the contribution is about 200˚nm.

Of course, these need to be converted to contributions to θ(80) or uncorrectable
wavefront error before determining whether there is a problem.  Furthermore, wavefront
information can be obtained for the lowest set of modes and used in conjunction with the
edge sensors to provide improved estimates.  Finally, if the reason for increasing the
control bandwidth is to compensate for wind, then not every mode shape needs to have a
higher bandwidth, since the wind is decorrelated over a distance of a few metres (see
ref. 5̊), hence there is no need to amplify the sensor noise of the poorly observed modes.
Each of these will be dealt with in the subsequent sections.

4.  Conversion to θθθθ(80) errors
The contribution to image blur is obtained by considering the rms segment rotation for
each mode.  Denote the rms noise (from any source) on mode ξi as ζ i.  Thus for example
with the control above, the residual noise on mode ξi is ζ i˚=˚µ⋅σi

-1, where µ is a constant
that depends on the sensor noise and control bandwidth, and σi is the corresponding
singular value of the A matrix.  Furthermore, if the noise on each individual sensor is
uncorrelated, then the noise on each mode is also uncorrelated.  The image blur depends
on the rms rotation, not on the rms displacement error x.  For each mode, then, compute
the multiplier R that is the ratio of rms rotation resulting from unit displacement in that
mode.  This can be done from geometry.  The multiplier R is shown in Figure 1.  The
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high spatial wavelength modes result in larger rms rotation than the low wavenumber
spatially smooth modes.  (Note that the dip past mode 1000 is not an error; only the first
~1000 modes can truly be interpreted as smooth  modes of a circular disc, and the
remaining ~2000 modes are dominated by individual segment motions.)

The mean-square rotation due to the noise ζ  on each mode is therefore ∑(Ri
2ζ i

2); this is
plotted in Figure 2.  Combining the modal error multiplier with the modal rotation yields
an error multiplier for CELT edge sensors of roughly 1.4˚mas/nm.  This is the noise
propagation factor from sensor noise to estimation errors in segment rotations, analogous
to the earlier noise propagation from sensor noise to estimation errors in segment
displacements.  To obtain the contribution to the error budget, this factor needs to be
combined with the sensor noise (11˚nm/sqrt(Hz)) and the control bandwidth (e.g. 0.05˚Hz
or 1˚Hz) and the conversion factor from segment tips and tilts to θ(80) of 1.27.  Thus with
edge sensors alone, the two bandwidths would result in θ(80)˚~˚5 or 25 mas respectively.

5. Diffraction-limited errors
With adaptive optics on, most of the errors introduced by sensor noise can be corrected.
The errors that remain result from edge discontinuities between segments.  A rough
estimate for these can be obtained by noting that each inter-segment edge has two edge
sensors, so that the resulting uncertainty in the edge discontinuity is 1/sqrt(2)⋅Φ.  The
uncertainty within the control bandwidth again scales with ((π/2)⋅f0)

_.

The fraction of the rms edge discontinuity remaining after correction by adaptive optics is
approximated by a 2-dimensional geometric argument.  If the DM slopes were piecewise
constant, then the residual displacement can be obtained from the ratio l/L where l is the
length between DM actuators and L is the segment length.  Integrating the area under the
remaining triangle gives the controlled rms surface error σctrl in terms of the uncontrolled
rms error σunc as:

σctrl˚=˚(l/L/12)_σunc

For a deformable mirror with ~7000 actuators and a primary mirror with 1080 segments,
l/L is ~2.5 hence σctrl˚≈˚0.18σunc.

The residual wave-front error resulting from sensor noise propagation is therefore given
by the product of all of these factors:

σwf˚=˚2⋅(0.18 nm ctrl/nm unctrl)⋅(11 nm/sqrt(Hz))⋅(1/sqrt(2))⋅((π/2)⋅f0)
_

Thus for control bandwidths of 0.05 or 1˚Hz, the wavefront error will be 1 or 3.5˚nm.
Wavefront information will not change this result significantly.  This rough analysis
verifies that sensor noise propagation is not a critical issue for diffraction-limited
observations.
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6.  Inclusion of wavefront information
The displacement estimates for the low wave-number modes can be improved using
optical wavefront information.  A Shack-Hartmann wavefront sensor measures the
average wavefront tip and tilt on each element of an array of lenslets.  The corresponding
sensor influence matrix Aw is computed by averaging the tip/tilt errors of the segments
that are mapped onto each lenslet.

Since the wavefront information must be available anywhere in the sky, sufficient
information must be obtainable from an 18.5 magnitude star.  For a 90 lenslet array with
realistic read noise, the sensor noise is roughly 30˚mas.  This result is based on analysis
by Chanan (this is documented in the first CELT quarterly report6), and corresponds to a
0.03˚s integration time.  However, this estimate does not include the noise contribution
from the atmosphere, which will be substantially larger.  Without including this effect,
the analysis can be considered illustrative, but not quantitatively accurate.

The edge and wavefront sensor information can then be combined to estimate the
resulting error propagation.  Figure 3 compares the modal error multipliers for the two
different sensors, scaled by their respective noise levels, with modes ordered from lowest
wave-number (least observable) to highest.  Note that this figure was generated using a
relative scale factor of 30˚mas to 6˚nm, which is not correct unless both values
correspond to the same low-pass filtering.  If the former number corresponds to a 33˚Hz
update rate, then it could be passed through a 0.2˚Hz filter to give only 4 m̊as of residual
noise.  (The factor to obtain the residual noise variance is the filter frequency with the
same factor of π/2 from before, divided by the Nyquist rate for the unfiltered signal.)
One could undoubtedly re-optimize the wavefront sensor for a lower output rate, the
purpose of this is only to estimate the scaling between the two sensors of ~0.7˚mas/nm.

Even with the original scale factor in the figure of 5˚mas/nm, the wavefront sensor
provides better information for the first 50 modes.  The next section addresses combining
the two sensors using a Kalman filter, however, for simplicity in our initial analysis we
used the projection from the singular value decomposition of the edge sensor A matrix,
and applied only wavefront information for the first 50 modes, and only edge sensor
information for the remaining modes.  With the scale factor of 5˚mas/nm, this gives a 6-
fold reduction in the sensor noise error multiplier relative to using edge sensor
information only.  With the corrected scale factor of 0.7˚mas/nm, then the error multiplier
drops down to 2.3 (with this noise, the wavefront information can be used for more than
50 modes, but the final error multiplier is not strongly sensitive to this).

The best approach is to use all of the information (wavefront and edge sensors) to
estimate the entire displacement vector (represented either as errors at actuator locations,
x, or as modes, ξ).  Define a scaling parameter γ2˚=˚ϕe/ϕw, where ϕe and ϕw are the
covariances associated with an individual edge sensor s and wavefront sensor s noise
respectively.  (It is assumed that the noise on each sensor of each type is uncorrelated and
has the same covariance, so the covariance of ne is Φe˚=˚〈nene

T〉˚=˚ϕeI where the operator
〈¥〉  is the expectation, and I is the identity matrix of appropriate size.  The scaling
parameter γ is the ratio of rms sensor noise on the wavefront sensors relative to the edge
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sensors, in appropriate units.  An overall set of measurements y˚=˚Ax˚+˚n can then be
created as the vector of ye and γyw, the corresponding matrix A formed by stacking Ae and
γAw, and a new estimate x ˚ formed as before but using the pseudo-inverse of this new A
matrix multiplying all of the sensor information.  This estimate will be optimal for the
combined set of sensors if the sensor noise is small compared to the disturbances.  The
singular values of this new A matrix give an improved noise multiplier compared to using
one set of sensors for one set of modes and the other for the remainder; all sensors are
used for all modes.  The resulting curve is also plotted in the figure and, as expected, falls
below either of the other curves.  The noise multiplier obtained from the optimal
combination of the sensors is about 7% better than the estimate of the noise multiplier
obtained by using the wavefront information for the first 50 modes and the edge sensors
for the remainder.  That is, it is worth doing from the perspective of ultimately
implementing the control, but does not substantially impact the assessment of error
budgets.  Also note that the value of γ used in creating the figure was again 5˚mas/nm,
and thus the figure should be considered as a qualitative guide to the type of results one
could expect, rather than a quantitative assessment.  Thus the rms surface error is given
by

σrms = (11˚nm/sqrt(Hz))⋅(2.1 nm/nm)⋅((π/2)⋅0.05Hz)_˚

yielding 6 or 30˚nm rms surface error for a control bandwidth of 0.05 or 1˚Hz.  While the
wavefront error is considerable, most of it will be correctable by AO.

Figure 4 compares the wavefront and edge sensor information in terms of the error
multipliers between sensor noise and rms segment rotation, a more useful figure of merit
for the seeing-limited case.  Again, this figure is plotted with γ̊ = 5 m̊as/nm.  Adding the
contributions from every mode gives the overall error multiplier as ~0.9 mas/nm, or
roughly 2/3 of the value without wavefront information.  For γ̊ =˚0.7˚mas/nm, the error
multiplier only drops by about 10% to ~0.8˚mas/nm.

Comparisons can again be made as a function of control bandwidth:

θ(80) = (11 n̊m/sqrt(Hz))⋅(1.27 θ(80)/θrms)⋅(0.8 mas/nm)⋅((π/2)⋅0.05Hz)_˚

giving θ(80) = 3˚mas for a 0.05˚Hz bandwidth and θ(80) = 14˚mas for a 1˚Hz bandwidth
(compared with estimates of 5 and 25˚mas without the wavefront information).

Again, recall that the atmospheric contribution to the wavefront sensor has not been
included, and the noise contribution will increase once this is taken into account.

7.  Control algorithm notes
The current control algorithm (integral control based on the least-squares estimate
(ATA)-1ATy) is optimal if the sensor noise is small compared to disturbances, and yields
the same bandwidth for every mode.  However, if the control bandwidth is increased to
compensate for wind-induced vibration, then the assumption of negligible sensor noise is
no longer true.  Due to the increased error propagation for CELT relative to Keck,
negligible sensor noise may be a poor assumption even for the same control bandwidth.
The optimal estimate of the position errors, and hence the optimal actuator commands,
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can be obtained from a Kalman filter.  The net effect is to make the bandwidth a function
of the modal observability, so that there is greater filtering on those modes that are poorly
estimated.

As above, define the combined vector of sensor measurements y and corresponding
matrix A and noise n.  Thus assume that the state vector x and measurement y satisfies:

xk+1˚=˚xk̊ +˚uk̊ +˚wk

yk˚=˚Axk̊ +˚nk

Ignoring the control input uk, then the estimate is given by the following equation, for
some gain H.

xk+1˚= x̊k˚+˚H⋅(yk˚−˚A xk)
         = (I˚−˚HA) xk˚+˚H yk

Recall the singular value decomposition of A˚=˚UΣVT, with σi as the ith singular value of
A.  Choose the matrix H to have the same structure as the pseudo-inverse of A, so that

H˚=˚VΛUT

where the modal gain matrix Λ˚has diagonal elements λi˚=˚σi
-1⋅Fi for some vector of

modal factors Fi.  With these definitions, then the estimate is a first order low-pass filter
of the measurements, with a bandwidth that depends on the mode.  If, for a given mode,
Fi˚=˚1, then the estimate for that mode is the same least squares estimate as before, and
the resulting control law has the same bandwidth as before.  For Fi˚<˚1, then some
additional filtering is done by the estimation and the control law uk+1˚=˚uk̊− x̊k will have a
lower bandwidth.  (Note that the factor β has been removed, since any filtering can be
done by the estimator, and it simplifies the discussion of the impact of Fi.  If xk is in fact
the best possible estimate of the residual error at time step k, then there is no reason to
further reduce the control gain; nonetheless it may still be a useful design parameter.)

The optimal value for H can be found through a Kalman filter.  With the scaling γ on
wavefront information, then the covariance Φ˚=˚〈nnT〉˚will be diagonal with elements ϕe

(this assumption is not required, but simplifies the analysis).  Define also the covariance
matrix Θ of the noise w that represents the unpredictable component of the disturbances
on the primary mirror (that is, after the predictable component of the gravity disturbance
is removed through feedforward control).  The optimal estimate minimizes the covariance
Ξ of the estimation error, which is given by ek˚=˚xk̊−  ̊xk.  The optimal gain is in general
computed from the Discrete Algebraic Riccati equation.  The matrices Ξ and H satisfy

Ψ˚−˚ΞAT(AΞAT˚+˚Φ)-1AΞ˚=˚0

H˚=˚ΞAT(AΞAT˚+˚Φ)-1

In the special case where the covariance matrices Ψ and Φ of w and n are diagonal with
equal elements ψ and ϕ respectively, then H has the form VΛUT written earlier, and λ i
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can be obtained from a scalar version of the equation for H and Ξ.  The solution only
depends on the ratio of the measurement and process noise, so define µ˚=˚ϕ/ψ.  Then

λi˚=˚σi
-1⋅Fi,

Fi˚=˚κiσi
2/(κiσi

2˚+˚µ)

κi˚=˚_⋅(1˚+˚(1˚+˚4µ/σi
2)_)

Thus for µ˚→˚0 (no measurement noise), then the optimal gain matrix H is precisely the
pseudo-inverse of A used earlier, and substituting this into the optimal estimator equation
yields the optimal estimate used earlier that depends only on the current measurement.
For µ˚≠˚0, then the modal estimator gain is reduced by an amount dependent on the
singular value of that mode; for well-observed modes (σi large), the factor remains close
to unity.

The optimal estimator does precisely what one might expect.  If every element of x is
equally disturbed, and hence every mode ξ is equally disturbed (since the matrix V is
unitary), then the estimates for those modes where the sensor information is reliable will
be updated at a higher bandwidth than those modes where the sensor information is poor.
These latter modes have a built in filter that averages out more of the information.  The
control law built on this estimator automatically controls the high spatial bandwidth
modes at a higher temporal bandwidth than the poorly observed low spatial bandwidth
modes.  This is precisely the desired behaviour.

The approach above can be extended by including a proper model of the spatial scale of
the disturbances (which would be modal; that is, the higher spatial frequency modes are
more excited by disturbances such as wind than the lower spatial frequency modes).  The
control problem can similarly be solved in an optimal fashion.  If all modes are weighted
equally, then there is no change to the control law, but one could in principle also weight
different modes based on their contribution to either a seeing-limited or AO performance
metric.  The resulting control law still uses all of the sensor information to compute each
control signal, but in a modal manner.  Alternatively, rather than pretending that we know
the details of the disturbances and measurement noise processes, one can simply interpret
the parameter µ above as a tuning parameter that gives us desirable control behaviour.
The control bandwidth for the best observed modes can be increased without a significant
increase in the sensor noise contribution to the error budget.  Even a modest value of
µ˚=˚0.01 yields a factor of 4 reduction in the error propagation using edge sensors only,
for a constant bandwidth on the well observed modes.  Conversely, the overall errors
could be kept the same while the bandwidth of these well-observed modes is increased by
a factor of 16.

8.  Conclusions
A complete estimate of the propagation of sensor noise to errors in the actively controlled
degrees of freedom of the primary mirror requires the control algorithm to be taken into
account.  In particular, the total contribution scales with the square root of the bandwidth
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(the variance scales linearly).  The control algorithm can be readily modified, with no
increase in on-line computation, to allow the bandwidth to depend on the modal
observability.  This will allow the bandwidth of the high spatial wavenumber modes to be
increased with less penalty on sensor noise propagation.  A final estimate of the sensor
noise propagation error will need to be done in conjunction with optimizing the control
algorithm in order to trade the reduction in disturbances (e.g. wind-induced vibration)
obtained with a higher bandwidth against the increase in sensor noise propagation.

The errors resulting from sensor noise are predominantly in the low wave-number modes
that are poorly observed with edge sensors.  Therefore, this is primarily a concern for
seeing-limited, not diffraction-limited observations.  Using the Keck edge sensor noise of
6˚nm with a 0.2˚Hz filter (or 11n̊m/sqrt(Hz)) and converting to θ(80) yields between 5
and 25˚mas noise for control bandwidths of 0.05 and 1 Hz respectively.  (Even for the
1˚Hz bandwidth, the contribution to wavefront error with AO on is only 3.5˚nm.)

Including wavefront information has a significant impact on the residual surface errors
due to sensor noise.  The wavefront sensor noise has not yet been accurately estimated, as
the (dominant) contribution from the atmosphere has not yet been accounted for.
Nonetheless, an optimal combination of the two sensor systems is straightforward.
Ignoring the atmospheric noise, the resulting contribution to θ(80) for control bandwidths
of 0.05 and 1˚Hz is 3 or 14˚mas.  Although it appears that it may be possible to meet the
error budget without wavefront sensing, it seems prudent to continue to assume
wavefront information in the design for two reasons; first because the design of the CELT
edge sensors has not yet been completed and therefore the noise level is uncertain, and
second, because the optimal control bandwidth to balance sensor noise propagation
against residual higher frequency errors remains to be determined.
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Figure 1.  Ratio of rms tip/tilt of each mode to the rms displacement of each mode, in mas/nm.  The
low wavenumber, spatially smooth modes, have less rotation than piston.  The last ~2000 modes
involve individual segment rotations and are different in character.
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Figure 2.  Modal error multipliers for seeing-limited case with edge sensors, in mas of segment
rotation per nm of edge sensor noise.
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Figure 3.  Qualitative comparison of CELT edge sensor and wavefront sensor modal error
multipliers, and the error multiplier for the combined system.  The relative factor between the two
sensor systems (30mas/6nm) is perhaps a factor of 7 too high.
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Figure 4.  Modal error multiplier for seeing-limited case, in mas of segment rotation per nm of edge
sensor noise, comparing edge sensors, wavefront information, and optimal combination.  Note that
the scale factor between wavefront and edge sensors is arbitrary, for qualitative illustrative purposes
only.
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