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1 Introduction

Large alt-azimuth mounted telescopes can take advantage of the Nasmyth

focus for additional instruments. In the case of the Keck telescopes these

instruments are mounted to the Nasmyth platforms, which move with the

telescope in azimuth but remain stationary when the telescope's altitude is

changed. Generally the instruments will be aligned with the altitude axis of

the telescope, in which case the tertiary mirror does not need to be moved

independently of the primary mirror. The size and mass of instruments scale

approximately with the size of the telescope. For the proposed California

Extremely Large Telescope (C.E.L.T.), with its 30m diameter primary mir-

ror, the projected size and mass would make a swapping of the instruments

diÆcult and time consuming. For this reason it has been proposed to allow

for additional positions on the Nasmyth platforms, which would necessarily

lie away from the altitude axis. By changing the con�guration of the tertiary

mirror di�erent instruments could be accessed without having to take the

time to interchange their positions.

altitude
axisu

v

Nasmyth Platform

primary
mirror

An \o�-altitude-axis" position on the Nasmyth platforms brings with it

three complications:

1. The position of the tertiary mirror is dependent on altitude and must

be adjusted as the telescope tracks an object.

2. For certain positions on the Nasmyth platform the tertiary mirror has

to be moved in such a way that some vignetting occurs.

3. The amount of �eld rotation will vary for di�erent Nasmyth positions.
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In this paper I will address all three of these issues and describe the mathe-

matical relations, independently of the actual design of the telescope.

2 Background

The azimuth (A) and altitude (a) of the primary mirror and the amount

of �eld rotation (p) depend on the latitude (�) of the telescope, and the

declination (Æ) and hour angle (h) of the target. The dependences of A, a,

p, and their �rst and second time derivatives are calculated in Nelson (1981)

and are given by equations 1-9. Here the natural sidereal rate is given by
_h = !0 ' 15Æh�1.

a = sin�1 [sin Æ sin�+ cos Æ cos� cos h] (1)

A = � tan�1

"
cos Æ sin h

sin Æ cos�� cos Æ sin� cos h

#
(2)

p = tan�1

"
sin h

tan� cos Æ � sin Æ cos h

#
(3)

_a

!0

= sinA cos� (4)

_A

!0

= sin�� tan a cosA cos� (5)

_p

!0

= �cos � cosA

cos a
(6)

�a

!2
0

=
_A

!0

cosA cos� (7)

�A

!2
0

= � tan2 a sin 2A cos2 �+
1

2
tan a sinA sin 2�� 1

2
sin 2A cos2 � (8)

�p

!2
0

=
sinA sin 2�

2 cos a
� sin a sin 2A cos2 �

cos2 a
(9)

Note that _A, _p, �a, �A, and �p experience singularities as a ! �

2
. Due to

physical limitations of the telescope drives each of these terms will generate

its own blind spot. As is shown in later sections the necessary movement of

the tertiary mirror is not subject to any additional blind spots.
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3 Coordinate Systems

In the following calculations I will make use of three distinct coordinate sys-

tems. All three have a coincident origin, but are \tied" to di�erent elements

of the telescope:

1. Unprimed coordinates (x; y; z) are �xed with respect to the Nasmyth

platforms.

x

y

z
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2. Single primed coordinates (x0; y0; z0) are �xed with respect to the pri-

mary mirror.

x’=x

y’

z’

3. Double primed coordinates (x00; y00; z00) are �xed with respect to the

tertiary mirror.

primary
mirror

tertiary
mirror

x’’

y’’

z’’

In these coordinates the altitude axis is identical to both the x and x0 axes,

and the optical axis is the z0 axis. Since the Nasmyth platforms move with

the primary mirror in azimuth, the primed coordinate system is related to

the unprimed by only a rotation around the altitude axis by an angle �a.

When the primary mirror is pointed at the zenith (a = �

2
) the primed and

unprimed coordinate systems are identical. The double primed coordinate

system, however, is related to the primed one by two rotations: one around

the optical axis (z0) by an angle � and the other around the x00 axis by an

angle �. It is one of the purposes of this paper to describe the equations of
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motion of the tertiary mirror, i.e. the dependence of �, �, and their time

derivatives on a, u, and v.

4 Tertiary Mirror Equations of Motion (v = 0)

For simplicity I will consider in this section the case where the additional

instrument positions still lie in the orgininal plane (v = 0). In section 5 I

will then present the results for the general case.

The initial position of the tertiary mirror (�; � = 0) is de�ned such that

it will reect the incoming lightray onto the positive x-axis (u = 0). The

orientation of the tertiary mirror is �xed by the direction of the normal (n3).

The initial normal is given by:

n̂3 = n3(a; u = 0) =
1p
2

0
B@

1

cos a

sin a

1
CA (10)

In order for the incoming lightray to be reected onto an arbitrary position

on the Nasmyth platform the tertiary mirror must have a position speci�ed

by this normal:

n03 = n3(a; u) =
1q

2(1 + cos a sinu)

0
B@ cos u

cos a+ sin u

sin a

1
CA (11)

All that needs to be done now is to �nd � and �, such that n̂3 is rotated onto

n03. I will employ the following strategy to solve this problem:

� Determine the matrix representing the rotation of a vector around the

optical axis in unprimed coordinates, call it Rz0 .

� Determine the matrix representing the rotation of a vector around the

x00 axis in unprimed coordinates, call it Rx00.

� Solve Rx00 �Rx0 � n̂3 = n03 for �(a; u) and �(a; u).

4.1 Rotation about z
0 axis

The matrix representing the rotation of a vector around the z0 axis is obtained

by the following three steps:
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i) transform into primed coordinate system, i.e. (0; cos a; sin a)! (0; 0; 1).

0
B@ 1 0 0

0 sin a � cos a

0 cos a sin a

1
CA
0
B@ 0

cos a

sin a

1
CA =

0
B@ 0

0

1

1
CA (12)

ii) rotate about z-axis by � degrees (still in primed coordinate system).

0
B@

cos� � sin� 0

sin� cos � 0

0 0 1

1
CA (13)

iii) transform back into unprimed coordinate system, i.e. (1; 0; 0)! (0; cos a; sin a).

0
B@ 1 0 0

0 sin a cos a

0 � cos a sin a

1
CA
0
B@ 0

0

1

1
CA =

0
B@ 0

cos a

sin a

1
CA (14)

Thus a rotation about the z0 axis by an angle � is represented by this

matrix in unprimed coordinates:

Rz0 =

0
B@ cos� � sin a sin� cos a sin�

sin a sin� sin2 a cos�+ cos2 a sin a cos a(1� cos�)

� cos a sin� sin a cos a(1� cos�) cos2 a cos�+ sin2 a

1
CA(15)

4.2 Rotation about x
00 axis

First we need to determine the representation of x00 in the unprimed coor-

dinate system. As mentioned above the double primed coordinate system is

tied to the tertiary mirror and hence depends on both � and �. But since the

x00 axis is the rotation axis for the angle �, it will depend only on �. In primed

coordinates x00 is given by (sin�;� cos�; 0), since when � = 0 the tertiary

mirror x-axis coincides with the negative primary mirror y-axis (x00 = �y0).
x00 is transformed to the unprimed coordinate system by the matrix in eq.14.

Thus x00 in unprimed coordinates is given by (sin�;� sin a cos�; cos a cos�).

Now we are prepared to determine the matrix representing a rotation

around the x00 axis in unprimed coordinates. In analogy to the procedure

employed in 4:1 this is achieved by three steps:
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i) transform to a frame where (sin�;� sin a cos�; cos a cos�) is (1; 0; 0).

For simplicity I will pick the double primed coordinate system with

� = 0.

0
BB@

sin� � cos� sin a cos a cos�
1p
2
cos � �1p

2
(cos a� sin a sin�) �1p

2
(sin a+ cos a sin�)

1p
2
cos � 1p

2
(cos a + sin a sin�) 1p

2
(sin a� cos a sin�)

1
CCA (16)

ii) rotate about x-axis by � degrees (still in double primed coordinate

system).

0
B@

1 0 0

0 cos � � sin�

0 sin� cos�

1
CA (17)

iii) transform back into unprimed coordinate system.

0
BB@

sin� 1p
2
cos� 1p

2
cos�

� cos� sin a �1p
2
(cos a� sin a sin�) 1p

2
(cos a+ sin a sin�)

cos a cos� �1p
2
(sin a + cos a sin�) 1p

2
(sin a� cos a sin�)

1
CCA(18)

Thus a rotation about the x00 axis by an angle � is represented by this

rather complicated matrix in unprimed coordinates:

R
x00 =

�
cos

2 � cos �+ sin
2 � cos �(sina sin�(cos� � 1)� cos a sin�) � cos�(sin� cos a(cos� � 1) + sina sin�)

cos�(sina sin�(cos�� 1) + cos a sin�) cos
2 a cos �+ sin

2 a(cos2 �+ sin
2 � cos �) � cos

2 � sin 2a sin2
�

2
� sin� sin�

� cos�(sin� cos a(cos�� 1) � sina sin�) � cos
2 � sin 2a sin2

�

2
+ sin� sin� cos � sin

2 a+ cos
2 a(cos2 �+ sin

2 � cos�)

�
(19)

4.3 Equations of Motion

We are now prepared to apply the two rotations (Rz0 ; Rx00) to the initial

normal of the tertiary mirror (n̂3), equate the resulting vector to the �nal

tertiary normal (n03), and solve for � and �.

Rx00 �Rz0 � n̂3 = n03 (20)

This leads to the following three equations:
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I cos�(cos�� sin�) = cos up
1+cos a sinu

II sin a sin�(cos�� sin�) + cos a(cos�+ sin�) = cos a+sinup
1+cos a sinu

III � cos a sin�(cos�� sin�) + sin a(cos�+ sin�) = sinap
1+cos a sinu

Solving these three equations for � and �, and then taking time deriva-

tives I arrive at the following solutions:

sin� =
sin a tanup

1 + sin2 a tan2 u

cos� =
1p

1 + sin2 a tan2 u
(21)

_� = _a
cos a tanu

1 + sin2 a tan2 u
(22)

�� =
�a

_a
_�� _�2 sin a tan u

�
1 +

1

sin2 u cos2 a

�
(23)

sin� =
1

2

hp
1 + cos a sinu�

p
1� cos a sinu

i

cos� =
1

2

hp
1 + cos a sinu+

p
1� cos a sin u

i
(24)

_� = � _a sin a sinu

2
p
1� cos2 a sin2 u

(25)

�� =
�a

_a
_�+ _� _a cot a

"
1� 4

�
_�

_a

�2
#

(26)

One can immediately see that no additional blindspots are introduced,

since none of the expressions have singularities for u 6= �

2
. The reader is

encouraged to check these results for two limiting cases. With the primary

mirror pointing at zenith (a = �

2
) a rotation about the x00 axis is unnecessary

(� = 0) and the rotation around the optical axis is all that's needed (� = u).

On the other hand, when the primary is pointing at the horizon (a = 0), the

rotation about the optical axis is unnecessary (� = 0) and the tertiary needs
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to be rotated about the x00 axis by � = u

2
.

5 General Tertiary Mirror E.O.M. (u; v 6= 0)

When allowing for additional instrument positions that are elevated with

respect to the traditional \on-altitude-axis" position, the equations get a

little more complicated. The normal �xing the orientation of the tertiary

mirror is now:

n03 =
1q

2(1 + cos a sin u cos v + sin a sin v)

0
B@ cos u cos v

cos a+ sin u cos v

sin a + sin v

1
CA (27)

This normal is now set equal to the rotated intial normal (Eq.20), and

the resulting three equations are solved for � and �, now as a function of a,

u, and v. These are the solutions:

sin� =
sin a sinu cos v � sin v cos aq

cos2 u cos2 v + (sin a sinu cos v � cos a sin v)2

cos� =
cos u cos vq

cos2 u cos2 v + (sin a sinu cos v � cos a sin v)2
(28)

_� = _a
cos u cos v(cos a sinu cos v + sin a sin v)

cos2 u cos2 v + (sin a sinu cos v � cos a sin v)2
(29)

�� =
�a

_a
_�� _�2(sin a tanu� cos a

tan v

cos u
)

"
1 +

1� 1

2
sin 2a sinu sin 2v

(cos a sinu cos v + sin a sin v)2

#
(30)

sin� =
1

2

hp
1 + cos a sinu cos v + sin a sin v �

p
1� cos a sinu cos v � sin a sin v

i

cos� =
1

2

hp
1� cos a sin u cos v � sin a sin v �

p
1 + cos a sinu cos v + sin a sin v

i
(31)

_� = � _a(sin a sin u cos v � cos a sin v)

2
q
1� (cos a sinu cos v + sin a sin v)2

(32)

�� =
�a

_a
_�+ _� _a

�
cos a sinu cos v + sin a sin v

sin a sinu cos v � cos a sin v

� "
1� 4

�
_�

_a

�2
#

(33)
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Equations 28-33 reduce to equations 21-26 when v = 0.

6 Additional Complications

As mentioned in the introduction, the equations of motion are not the only

complications one has to worry about when allowing for \o�-altitude-axis"

positions on the Nasmyth platforms. The amount of �eld rotation is al-

tered, and because the incoming lightbeam will see di�erent projections of

the actual shape of the tertiary mirror some vignetting may occur.

6.1 Field Rotation

It is important to note the meaning of �eld rotation in this paper. Perhaps

in contrast to the conventional use of the word, '�eld rotation' here is not

used to denote the rate of rotation of an image on a detector, but the degree

of rotation. By de�nition the �eld rotation at the prime or Cassegrain focus,

i.e. on the optical axis, is equal to zero when the primary is pointing at the

meridian. When the primary points at an object away from the meridian the

�eld rotation is given by the angle between the great circle perpendicular to

the horizon and passing through the object to the great circle perpendicular

to the equator and passing through the object. This angle is more commonly

known as the parallactic angle (p).
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Nelson (1981) has worked out the dependence of this �eld rotation and

its �rst and second time derivatives on the latitude of the telescope and the

hour angle and declination of the observed object. The results are shown

in eq. 3, 6, and 9. The �eld rotation at the Nasmyth platforms is slightly

di�erent, and given by:

pN(u) = p + a cos u cos v (34)

6.2 Vignetting

The tertiary will be tilted at an angle (45Æ��) with respect to the optical axis
in order to reect the incoming light into the detector. The incoming light

will \see" the projection of the surface of the tertiary mirror onto the optical

plane, i.e. the plane perpendicular to the optical axis. For the traditional

Nasmyth platform position (u = 0; � = 0) this projection has the shape of a

circle when the tertiary mirror's shape is an ellipse with eccentricity e = 1p
2
.

For \o�-altitude-axis" positions on the Nasmyth platform the angle between
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the optical axis (z0)and the tertiary normal (n3) and thus the projected shape

of the tertiary mirror will vary with time. For certain con�gurations it is

possible that the incoming light will \see" an ellipse of smaller area than the

traditional circle, in which case some of the light would not be reected into

the detector, and the image would experience some vignetting.

tertiary mirror

optical axis

a

b

bproj

aproj

n3

α

Let a denote the semi-major axis and b the semi-minor axis of the tertiary

mirror ellipse. Let � denote the angle between the optical axis (z0) and the

tertiary normal (n3): n3 � ẑ0 = cos� = cos(�
4
� �). An eccentricity of 1p

2

implies that a

b
=
p
2. The projection of the tertiary mirror ellipse onto the

optical plane has no e�ect on the length of the semi-minor axis, but changes

the length of the semi-major axis.

aprojected

bprojected
=

ap
2b

cos(
�

4
� �) = cos�+ sin� (35)

Using eq.24 this gives the following result for the ratio of projected semi-

major axis (aprojected) to semi-minor axis (b).

aprojected

b
=
p
1 + cos a sinu cos v + sin a sin v (36)
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Note that this result shows that vignetting occurs only for (cos a sinu cos v+

sin a sin v) < 0, i.e. only if the detector is positioned \behind" the primary

mirror. How far behind the primary the detectors can lie before the amount

of vignetting becomes intolerable is dependent on the actual design of the

telescope (e.g. the distance of the tertiary above the primary, etc.) and will

not be adressed here.

7 Summary

Allowing for \o�-altitude-axis" detector positions on the Nasmyth platforms

greatly increases the exibility of a telescope. The price to pay is that the

tertiary mirror cannot remain �xed with respect to the primary as the tele-

scope tracks an object. In this paper I have derived the equations of mo-

tion of the tertiary mirror (Eq.21-26 for v = 0 and Eq. 28-33 for v 6= 0)

and calculated the additional �eld rotation (Eq.27) as well as the extent

of vignetting (Eq.29). The motion of the tertiary mirror, necessary in or-

der for the incoming light to be reected into a detector located at a po-

sition away from the altitude axis, is not subject to any blind spots. The

additional �eld rotation does not cause any complications and vignetting

occurs only when the detector is positioned \behind" the primary mirror

((cos a sinu cos v + sin a sin v) < 0).
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